• This talk is an Instance. It is not unique, but the object referencing it is. It is but one of many Instances which are part of a Series of Instances, and, I quote “which series contains Instances that are referenced elsewhere in this Instance”.

• The Content Label, defined in the Presentation State Module, is:

 Image Registration and DICOM – when two worlds collide.

• Please pay careful attention as I may make reference to theReferenced Frame of Reference a few times though not all Instances of the references will reference the Frame of Reference – and they will not be unique.
DICOM Objects

- **Main image modalities**
 - CT
 - MR (multiple flavors)
 - PET/ NM
 - Ultrasound
 - SC etc

- **Main RT Objects**
 - Structure Set
 - Plan/ Brachy Plan
 - RT Image
 - Dose
 - Treatment Record
Clinical Applications

• CT/MR(S), CT/CT, MR/MR, CT/PET, CT/ Ultrasound etc
 – target localization pre- and post- treatment
 – Boost planning
 – Rigid and Deformable methods

• Functional imaging
 – Special requirements e.g. SUV, filters etc.
 – Slope/intercept problem?

• Tomotherapy
• Cone-Beam CT
• Daily Ultrasound localization
• Combined external and brachytherapy planning
Clinical Applications

- 4D Planning
 - Time series
 - 3D dose distributions
- Respiratory Gating
- Port film verification
 - Port/ simulator films
 - DRR
 - EDIP
 - patient imaging systems etc
- IMRT QA
 - Film
 - EPID
 - 2D Dose Planes – calculated/ measured
• Traditionally we have transformed MR(S)/CT/PET etc. to coordinate system of treatment planning CT
• Future we need to transform target and other volumes defined in primary (initial planning CT) coordinate system to secondary (subsequent treatment imaging modality) – could be u/s, cone-beam CT, traditional CT etc.
 – This is the most commonly requested feature CMS receives
Data Storage

- 4x4 transformation matrices
- Multiple references and cross-references
 - Inverse transforms?
- Transformation method
 - Fiducial points, correlation, MI
 - Rigid/deformable
- Mechanism to identify transformed data (not the original that is referenced by the transformation matrix).
Does the proposed supplement fulfill the preceding clinical requirements?

- Hard to tell - the basics appear to be covered in the inimitable (read – confusing, ambiguous) DICOM manner.
 - Massive sledgehammer to crack the proverbial nut!
 - Document is clearly a works-in-progress
 - Why two separate IODs – Spatial Registration and Spatial Fiducials?
 - Arguably existing contour objects could be utilized for fiducials.
 - I may have calculated the transformation via fiducials and want to transmit both to compliant systems
- Not clear (to me) if appropriate cross (back) references are covered?
Does the proposed supplement fulfill the preceding clinical requirements?

• There seems unhealthy emphasis on Fiducials
 – Fiducial matching is known to be the least reliable
 – Contour matching is also problematic
 – Why would anyone want to know the coordinates of the fiducials used in the matching process???

• If fiducial parameters are covered, why not include algorithmic parameters related to the more commonly used volumetric methods of registration e.g. MI, cross-correlation etc.